
The New Casper: Query Processing for Location Services
without Compromising Privacy

∗

Mohamed F. Mokbel1 Chi-Yin Chow

1 Walid G. Aref

2

1D ep art ment of Comp u t er S cien ce an d En gin eerin g, U n iversity of Min n esot a, Min n eap olis, MN
2D ep art ment of Comp u t er S cien ce, Pu rd u e U n iversity, West Lafayet t e, I N

ABSTRACT
This paper tackles a major privacy concern in current
location-based services where users have to continuously re-
port their locations to the database server in order to obtain
the service. For example, a user asking about the nearest
gas station has to report her exact location. With untrusted
servers, reporting the location information may lead to sev-
eral privacy threats. In this paper, we present Casper1; a
new framework in which mobile and stationary users can en-
tertain location-based services without revealing their loca-
tion information. Casper consists of two main components,
the location anonymizer and the privacy-aware query proces-

sor. The location anonymizer blurs the users’ exact loca-
tion information into cloaked spatial regions based on user-
specified privacy requirements. The privacy-aware query

processor is embedded inside the location-based database
server in order to deal with the cloaked spatial areas rather
than the exact location information. Experimental results
show that Casper achieves high quality location-based ser-
vices while providing anonymity for both data and queries.

1. INTRODUCTION
The explosive growth of location-detection devices (e.g.,

cellular phones, GPS-like devices, and RFIDs) results in
a wide spread of location-based applications. Examples
of these applications include location-based store finders
(“Where is my nearest restaurant”), traffic reports (“Let me

know if there is congestion within ten minutes of my route”),
and location-based advertisements (“Send e-coupons to all

cars that are within two miles of my gas station”). Regis-
tered users with location-based services continuously send

∗Mohamed Mokbel’s research is supported by the Grants-
in-Aid, University of Minnesota. Walid Aref’s research is
supported in part by the National Science Foundation under
Grants IIS-0093116 and IIS-0209120.
1Casper, the friendly ghost, is a 1960’s cartoon character for
a friendly ghost that can hide its location and help people.
(http://www.toontracker.com/casper/newcaspr.htm).

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

their location information to the location-based database
server. Upon requesting a service, a registered user has to
issue a location-based query that is executed at the server
based on the knowledge of the user location [24, 33, 36, 45].

Although location-based applications along with the
location-based query processing promise safety and conve-
nience, they threaten the privacy and security of their cus-
tomers. The location-based query processor relies mainly
on the implicit assumption that users agree to reveal their
private locations. In order to get a location-based service, a
user has to report her location. In other words, a user trades
her privacy with the service. If a user wants to keep her pri-
vate location information, she has to turn-off her location-
aware device and (temporarily) unsubscribe from the ser-
vice. With untrustworthy servers, such model provides sev-
eral privacy threats. For example, an employer may check
on her employee behavior by knowing the places she visits
and the time of each visit, the personal medical records can
be inferred by knowing which clinic a person visits, or some-
one can track the locations of his ex-friends. In fact, in many
cases, GPS devices have been used in stalking personal lo-
cations [15, 43]. The traditional approach of pseudonymity

(i.e., using a fake identity) [37] is not applicable to location-
based applications where a location of a person can directly
lead to the true identity. For example, asking about the
nearest Pizza restaurant to my home using a fake identity
will reveal my true identity, i.e., a resident of the home.

In this paper, we tackle such privacy-leakage models as
we propose Casper1; a novel framework that turns tradi-
tional location-based servers and query processors to pro-
vide anonymous service to their customers. In Casper, mo-
bile users can entertain location-based services without the
need to reveal their private location information. Upon reg-
istration with Casper, mobile users specify their convenient
level of privacy through a user-specified privacy profile. A
user privacy profile includes two parameters k and Amin.
k indicates that the mobile user wants to be k-anonymous,
i.e., not distinguishable among other k users while Amin in-
dicates that the user wants to hide her location information
within an area of at least Amin. Large values for k and Amin

indicate more strict privacy requirements.
Casper mainly consists of two components, namely, the

location anonymizer and the privacy-aware query processor.
The location anonymizer is a trusted third party that acts as
a middle layer between mobile users and the location-based
database server in order to: (1) receive the exact location
information from mobile users along with a privacy profile

of each user, (2) blur the exact location information into

763

cloaked spatial areas based on each user privacy profile, and
(3) send the cloaked spatial areas to the location-based data-
base server. The privacy-aware query processor is embedded
inside the location-based database server to tune its func-
tionality to deal with anonymous queries and cloaked spatial
areas rather than the exact location information. We iden-
tify three novel query types that are supported by Casper:
(1) Private queries over public data, e.g., “Where is my near-

est gas station”, in which the person who issues the query is
a private entity while the data (i.e., gas stations) are public,
(2) Public queries over private data, e.g., “How many cars in

a certain area”, in which a public entity asks about personal
private locations, and (3) Private queries over private data,
e.g., “Where is my nearest buddy” in which both the person
who issues the query and the requested data are private.
With this classification in mind, traditional location-based
query processors can support only public queries over public
data. Due to the lack of the exact location information at
the server, the anonymous query processor provides a can-

didate list of answers instead of a single exact answer. We
prove that our candidate list is inclusive, i.e., contains the
exact answer, and is minimal, i.e., a high quality answer
is given to the users. In general, the contributions of this
paper can be summarized as follows:

• We introduce Casper as a novel paradigm that allows
mobile users to anonymously entertain location-based
services by specifying their anonymity requirements
through a user privacy profile.

• We introduce the location anonymizer that blurs the
location information for mobile users into cloaked spa-
tial areas that match each user privacy profile.

• We identify three novel query types that are not sup-
ported by existing location-based servers, namely, pri-

vate queries over public data, public queries over pri-

vate data, and private queries over private data.

• We introduce a privacy-aware query processor that
provides a unified framework for supporting the new
query types. We prove that our privacy-aware query

processor results in an inclusive and minimal answer.

• We provide experimental evidence that our proposed
paradigm Casper is efficient in terms of query process-
ing time and cloaking time, is scalable in terms of sup-
porting large numbers of mobile users, and is privacy-

aware where it provides a high-quality answer without
the need for the exact location information.

The rest of the paper is organized as follows. Section 2
highlights the related work to Casper. The Casper archi-
tecture is outlined in Section 3. The two main components
of Casper, the location anonymizer and the privacy-aware

query processor are described in Sections 4 and 5, respec-
tively. Extensive experimental evaluation of Casper is pre-
sented in Section 6. Finally, Section 7 concludes the paper.

2. RELATED WORK
The k-anonymity model [39, 40] has been widely used in

maintaining data privacy (e.g., see [7, 29, 30, 31]). The main
idea is to have each record in the database k-anonymous,
i.e., not distinguishable among other k records. Although,
we aim for similar k-anonymity model for our mobile users,
none of these techniques can be applied to the case of

location-based queries, mainly for the following four reasons:
(1) These techniques preserve the privacy of the stored data.
In Casper, we aim not to store the data at all. Instead, we
store perturbed versions of the data. Thus, data privacy is
managed before storing the data. (2) These approaches pro-
tect the data not the queries. In Casper, we aim to protect
the person who issues the query. For example, a person who
wants to ask about her nearest ATM machine needs to pro-
tect her location while the ATM location information is not
protected. (3) These approaches guarantee the k-anonymity
for a snapshot of the database. In location-based environ-
ments, data and queries are continuously updated with high
rates. Such dynamic behavior calls for continuous main-
tenance of the k-anonymity model. (4) These approaches
assume a unified k-anonymity requirement for all the stored
records. In Casper, k-anonymity is a user-specified privacy
requirement which may have a different value for each user.

Motivated by the privacy threats of location-detection de-
vices [1, 6, 8, 44], several research efforts are dedicated to
protect the user location privacy (e.g., false dummies [27],
landmark objects [21], and location perturbation [13, 16,
17]). However, none of these approaches have addressed
the query processing issue, i.e., getting an anonymous ser-
vice from location-based applications. Several architectures
have been explored to provide secure data transformation
from the client to the server machines (e.g., secure-multi-
party communication [12], minimal information sharing [3],
untrusted third party [14], and trusted third party [2, 23]).
Among these models, Casper employs the trusted third
party model as it requires less computation overhead and
is more suitable for real-time query processing. The trusted
third party model is already utilized by existing location
privacy techniques (e.g., [8, 16, 17]) and is commercially ap-
plied in other fields. For example, the Anonymizer [4] is
responsible for private web surfing to internet users.

While our privacy-aware query processor is unique in na-
ture, there are previous attempts to provide similar function-
alities to our location anonymizer. The closest approaches
to ours are the spatio-temporal cloaking [17] and the Clique-
Cloak algorithm [16]. The spatio-temporal cloaking assumes
that all users have the same k-anonymity requirements. For
each user location update, the spatial space is recursively
divided in a KD-tree-like format till a suitable subspace is
found. Such technique lacks scalability as it deals with each
single movement of each user individually. The CliqueCloak
algorithm assumes a different k-anonymity requirement for
each user where it combines a set of users together and con-
structs a clique graph to decide that some users can share the
cloaked spatial area. The cloaked spatial area for combined
users is their minimum bounding rectangle. This approach
suffers from a major privacy threat where it reveals some in-
formation about the possible user locations (e.g., some users
should be lying on the rectangle boundary). In addition,
due to the computation overhead of computing the clique
graph, this approach is limited to a small number of users
with small k-anonymity requirements, i.e., k is from 5 to
10. Our location anonymizer distinguishes itself from these
two approaches as it: (1) Provides a customizable privacy
profile for each mobile user that contains the k-anonymity
and minimum cloaked area Amin requirements, (2) Scales
well to a large number of mobile users with arbitrary pri-
vacy profiles, and (3) Cannot be reverse engineered to give
any information about the exact user location.

764

Location-

based

Database

Server

Location Anonymizer

2: Cloaked Spatial

Region and/or Query

3: Candidate Answer

1: User Location

and/or Query

System User

4: Answer

Privacy-aware Query ProcessorBase Station

Figure 1: The Casper system architecture

3. CASPER SYSTEM ARCHITECTURE
Mobile users register with Casper by a certain privacy

profile that outlines the privacy requirements of each user.
A user privacy profile is defined as a tuple (k, Amin), where
k indicates that the user wants to be k-anonymous, i.e.,
not distinguishable among other k users, while Amin is the
minimum acceptable resolution of the cloaked spatial region.
Amin is particularly useful in dense areas where even a large
k would not achieve higher privacy requirements. Mobile
users have the ability to change their privacy profiles at any
time. Our employed privacy profile matches the privacy
requirements of mobiles users as depicted by several social
studies (e.g., see [6, 18, 20, 26, 32]).

Figure 1 depicts the Casper system architecture which
has two main components: the location anonymizer and the
privacy-aware query processor. The location anonymizer re-
ceives continuous location updates from mobile users, blurs
the location updates to cloaked spatial areas that match
each user privacy profile (k, Amin), and sends the cloaked
spatial areas to the location-based database server. While
cloaking the location information, the anonymizer also re-
moves any user identity to ensure the pseudonymity of the
location information [37]. Similar to the exact point loca-
tions, the location anonymizer also blurs the query loca-
tion information before sending a cloaked query area to the
location-based database server.

The privacy-aware query processor is embedded inside the
location-based database server to anonymously deal with
cloaked spatial areas rather than exact point locations. In-
stead of returning an exact answer, the privacy-aware query

processor returns a candidate list of answers to the location-
based query through the location anonymizer. Mobile users
would locally evaluate their queries given the candidate list.
The privacy-aware query processor guarantees that the can-
didate list is of minimal size and contains the exact query
answer. The size of the candidate list heavily depends on
the user privacy profile. A strict privacy profile would re-
sult in a large candidate list. Using their privacy profiles,
mobile users have the ability to adjust a personal trade-off
between the amount of information they would like to re-
veal about their locations and the quality of service that
they obtain from Casper. Location-based queries processed
at the privacy-aware location-based database server may be
received either from the mobile users or from public ad-
ministrators. Queries that come from mobile users are con-
sidered as private queries and should pass by the location

anonymizer to hide the query identity and blur the location
of the user who issues the query. Location-based queries
that are issued from public administrators are considered
as public queries and do not need to pass through the loca-

tion anonymizer, instead, they are directly submitted to the
location-based database server. The database server will an-
swer such public queries based on the stored blurred location
information of all mobile users.

8x8 Grid Structure

The Entire System Area

4x4 Grid Structure

2x2 Grid Structure

UID CID

...

Hash Table

...

...

...

... ...

... ...

... ...

... ...

(level 0)

(level 1)

(level 2)

(level 3)

Figure 2: The basic location anonymizer.

4. THE LOCATION ANONYMIZER
As depicted in Figure 1, the location anonymizer blurs the

exact point location information p of each mobile user to a
spatial region R that satisfies each user privacy profile. To
avoid the drawbacks of previous location anonymizers [16,
17], we identify the following four requirements that we aim
to satisfy in our location anonymizer:

1. Accuracy. The cloaked region R should be of area
AR and contain kR users that satisfy and as close as
possible to the user profile (i.e., kR & k, AR & Amin).

2. Quality. An adversary can only know that the ex-
act user location information could be equally likely
anywhere within the spatial cloaked region R.

3. Efficiency. The cloaking algorithm should be compu-
tationally efficient and scalable. It should be able to
cope with the continuous movement of large numbers
of mobile users and real-time requirements of spatio-
temporal queries.

4. Flexibility. Each registered user with the location
anonymizer should have (1) the ability to specify her
own privacy requirements and (2) the ability to change
her requirements at any time.

Notice that the spatio-temporal cloaking algorithm in [17]
can support only the quality requirement, while the Clique-
Cloak algorithm in [16] can partially support the accuracy
and flexibility requirements in terms of the k-anonymity
parameter. In the rest of this section, we present two al-
ternative techniques for our location anonymizer that sat-
isfy the above four requirements, namely, the basic location
anonymizer and the adaptive location anonymizer.

4.1 The Basic Location Anonymizer
Data structure. Figure 2 depicts the data structure for

the basic location anonymizer. The main idea is to employ a
grid-based complete pyramid data structure [41] that hier-
archically decomposes the spatial space into H levels where
a level of height h has 4h grid cells. The root of the pyramid
is of height zero and has only one grid cell that covers the
whole space. Each pyramid cell is represented as (cid, N)
where cid is the cell identifier while N is the number of mo-
bile users within the cell boundaries. The pyramid structure
is dynamically maintained to keep track of the current num-
ber of mobile users within each cell. In addition, we keep
track of a hash table that has one entry for each registered
mobile user with the form (uid, profile, cid) where uid is the
mobile user identifier, profile is the user’s privacy profile,
and cid is the cell identifier in which the mobile user is lo-
cated. cid is always at the lowest level of the pyramid (the
shaded level in Figure 2).

765

Algorithm 1 Bottom-up cloaking algorithm

1: Function BottomUp-Cloaking(k, Amin, cid)
2: if cid.N ≥ k and cid.Area ≥ Amin then
3: return Area(cid);
4: end if
5: cidV ← The vertical neighbor cell of cid.
6: cidH ← The horizontal neighbor cell of cid.
7: NV = cid.N + cidV .N , NH = cid.N + cidH .N
8: if (NV ≥ k OR NH ≥ k) AND 2cid.Area ≥ Amin then
9: if (NH ≥ k AND NV ≥ k AND NH ≤ NV) OR NV <

k then
10: return Area(cid) ∪Area(cidH);
11: else
12: return Area(cid) ∪Area(cidV);
13: end if
14: else
15: BottomUp-Cloaking((k, Amin),Parent(cid));
16: end if

Maintenance. Due to the highly dynamic environment
of location-based applications, any employed data structure
should be sustainable to frequent updates. A location up-
date is sent to the location anonymizer in the form (uid, x, y)
where uid is the user identifier, x and y are the spatial co-
ordinates of the user’s new location. Once the update is
received at the location anonymizer, a hash function h(x, y)
is applied to get the user cell identifier cidnew at the lowest
grid layer. Then, the user entry in the hash table is checked
to get its original cell identifier cidold. If the old cell identi-
fier matches the new one (cidold = cidnew), then there is no
need to do any more processing. If there is a change in the
cell identifier (cidold 6= cidnew), three operations should take
place: (1) Update the new cell identifier in the hash table,
(2) Update the counters N in both the old and new pyra-
mid grid cells, and (3) If necessary, propagate the changes in
the cell counters N for higher pyramid layers. If a new user
is registered, a new entry will be created in the hash table
and the counters of all the affected grid cells in the pyra-
mid structure are increased by one. Similarly, if an existing
user quits, its entry is deleted from the hash table and the
counters of all affected grid cells are decreased by one.

The cloaking algorithm. Algorithm 1 depicts a
bottom-up cloaking algorithm for the grid-based pyramid
structure. The input to the algorithm is the user privacy
profile (k, Amin) and the cell identifier cid for the gird cell
that the user is currently in. k and Amin should be less than
the total number of users registered in the system and the
total spatial area, respectively. If the initially given cell al-
ready satisfies the user privacy requirement, i.e., cid.N ≥ k
(the number of users within the cell is greater than k) and
cid.Area ≥ Amin (the cell area is larger than Amin), we
return the cell cid as the spatial cloaked area (Line 3 in Al-
gorithm 1). If this is not the case, we check for the vertical
and horizontal neighbor cells to cell cid. Two cells are con-
sidered neighbors to each other if they have the same parent
and lie in a common row (horizontal neighbor) or column
(vertical neighbor). Thus, each cell has only one horizontal
and one vertical neighbors. If the combination of the cell cid
with any of its neighbors yields a spatial region that satisfies
the anonymity requirement, we return the combination that
gives closer value to k (Lines 5 to 13 in Algorithm 1). If
none of the neighbors can be combined with cell cid, then
the algorithm is recursively executed with the parent cell of
cid till a valid cell is returned (Line 15 in Algorithm 1).

UID CID

...

Hash Table

...

...

...

... ...

... ...

... ...

... ... 8x8 Grid Structure

The Entire System Area

4x4 Grid Structure

2x2 Grid Structure

(level 0)

(level 1)

(level 2)

(level 3)

Figure 3: The adaptive location anonymizer.

4.2 The Adaptive Location Optimizer
The basic location anonymizer incurs high cost for both

location updates and cloaking time. For location updates,
when a user changes her cell from cid1 to cid2, a set of up-
dates need to be propagated from cid1 and cid2 at the lowest
level till a common parent is reached. For the cloaking time,
Algorithm 1 has to start from the lowest level regardless of
the user privacy requirements. To avoid these drawbacks,
we introduce the adaptive location anonymizer where the
pyramid structure is adaptively maintained to certain levels
that match the privacy requirements of existing users.

Data Structure. Figure 3 depicts the data structure for
the adaptive location anonymizer that mainly utilizes an in-
complete pyramid structure [5]. The contents of each grid
cell and the hash table are exactly similar to those of Fig-
ure 2. The main idea of the incomplete pyramid structure
is to maintain only those grid cells that can be potentially
used as cloaking regions for the mobile users. For example,
if all mobile users have strict privacy requirements where the
lowest pyramid level would not satisfy any user privacy pro-
file, the adaptive location anonymizer will not maintain such
level, hence, the cost of maintaining the pyramid structure is
significantly reduced. The shaded cells in Figure 3 indicate
the lowest level cells that are maintained (Compare to Fig-
ure 2 where all shaded cells are only in the lowest level). As
an example, in the second topmost level, the right bottom
quadrant is shaded indicating that all users in this quadrant
have strict privacy requirements that will not be satisfied by
any lower grid cell. Notice that it is not necessary to extend
a whole quadrant. For example, in the lowest level, there
are four shaded cells in the upper-right corner to indicate
that these cells have the most relaxed user privacy require-
ments. Instead of having the hash table pointing to the
lowest pyramid level as in Figure 2, in the adaptive location
anonymizer, the hash table points to the lowest maintained
cells which may not be at the lowest pyramid level.

Maintenance. In addition to the regular maintenance
procedures as that of the basic location anonymizer, the
adaptive location anonymizer is also responsible on main-
taining the shape of the incomplete pyramid. Due to the
highly dynamic environment, the shape of the incomplete
pyramid may have frequent changes. Two main operations
are identified to maintain the efficiency of the incomplete
pyramid structure, namely, cell splitting and cell merging.

Cell splitting. A cell cid at level i needs to be split into
four cells at level i + 1 if there is at least one user u in cid
with a privacy profile that can be satisfied by some cell at
level i + 1. To maintain such criterion, we keep track of the
most relaxed user ur for each cell. If a newly coming object
unew to the cell cid has more relaxed privacy requirement
than ur, we check if splitting cell cid into four cells at level

766

i + 1 would result in having a new cell that satisfies the
privacy requirements of unew . If this is the case, we will
split cell cid and distribute all its contents to the four new
cells. However, if this is not the case, we just update the
information of ur. In case one of the users leaves cell cid,
we just update ur if necessary.

Cell merging. Four cells at level i are merged into one
cell at a higher level i − 1 only if all the users in the level
i cells have strict privacy requirements that cannot be sat-
isfied within level i. To maintain this criterion, we keep
track of the most relaxed user u′

r for the four cells of level
i together. If such user leaves these cells, we have to check
upon all existing users and make sure that they still need
cells at level i. If this is the case, we just update the new
information of u′

r. However, if there is no need for any cell
at level i, we merge the four cells together into their parent
cell. In the case of a new user entering cells at level i, we
just update the information of u′

r if necessary.
The high cost of cell splitting and merging is amortized by

the huge saving in continuous updates and maintenance of
large numbers of non-utilized grid cells as in the case of the
basic location anonymizer. However, the basic assumption
is that mobile users are moving at reasonable speeds. Thus,
cell splitting and merging are not very frequent events. In
the case of extremely high speed, e.g., each user movement
results in a cell change, the basic location anonymizer would
have less maintenance cost than the adaptive one.

The cloaking algorithm. The cloaking algorithm for
the adaptive location anonymizer is exactly similar to Algo-
rithm 1. The only difference is that the input to the algo-
rithm is a cell cid from the lowest maintained level rather
than a cell from the lowest pyramid level. Thus, the number
of recursive calls of the algorithm (Line 15 in Algorithm 1)
is greatly reduced. In fact, in many cases, we may not need
any recursive calls.

4.3 Discussion
Both the basic and adaptive location anonymizers satisfy

the four requirements that we have set at the beginning of
this section, namely, accuracy, quality, efficiency, and flex-

ibility. In terms of accuracy, the ability to maintain large
numbers of small size grid cells along with searching for
horizontal and vertical neighbor grid cells help in achiev-
ing higher accuracy for large number of users of various
privacy requirements. For quality, the fact that we uti-
lize a pre-defined space partitioning scheme (i.e., the pyra-
mid structure) guarantees that the cloaked spatial area is
completely independent form the data. Thus, an adversary
cannot guess any information about the exact user location
other than that the probability that the user is located at
a certain point in the cloaked region R is 1

Area(R)
for all

points within R, i.e., the possible user location is uniformly
distributed over the cloaked region R. Compared to previ-
ous algorithms [16, 17], the efficiency of the pyramid-based
location anonymizer is obvious as its pre-computed grid cells
scale well to large numbers of mobile users. The main idea
is that the cloaking time is considerably low as the space
is already partitioned while the update time is optimized
through the efficient grid structure. With respect to flex-

ibility, our location-anonymizer allows each user to spec-
ify her convenient privacy requirements through the privacy
profile (k, Amin). In addition, a user has the flexibility to
change her privacy profile anytime.

5. PRIVACY-AWARE QUERY PROCESS-
ING

As depicted in Figure 1, the privacy-aware query proces-
sor is embedded inside the location-based database server.
The main goal of the privacy-aware query processor is to
provide highly efficient, accurate, and anonymous location-
based services based on the knowledge of the cloaked spatial
areas rather than the exact location information. Two data
types are stored in the privacy-aware location-based data-
base server, public data and private data. Public data in-
cludes stationary objects such as hospitals, restaurants, and
gas stations or moving objects such as police cars and on-site
workers. Such persons and facilities do not want to hide their
location information. Thus, they are stored directly in the
location-based database server without interference from the
location anonymizer. Private data mainly contains personal
information of mobile or stationary users with a privacy pro-

file of non-zero k or non-zero Amin. Such data are received at
the privacy-aware location-based database server as cloaked
spatial regions from the location anonymizer. Based on the
stored data, we identify three novel query types that are sup-
ported in Casper through its privacy-aware query processor:

• Private queries over public data. Examples of
these queries include a person (private query) asking
about her nearest gas station (public data). In this
case, the privacy-aware query processor does not have
the exact location of the person who issues the query
while the exact locations of gas stations are known.

• Public queries over private data. Examples of
these queries include an administrator (public query)
asking about the number of mobile users (private data)
in a certain area. In this case, the privacy-aware query

processor knows the exact query information, yet it
does not know the exact locations of mobile users.

• Private queries over private data. Examples of
these queries include a person (private query) asking
about her nearest buddy (private data). Both the ex-
act locations of the person and her buddies are not
available at the privacy-aware query processor.

With this classification in mind, traditional location-based
database servers (e.g., [19, 35, 45]) can support only public

queries over public data where the complete knowledge of
location information of both data and queries are available.
In the rest of this section, we will focus on the first and
third query types that involve private queries. The second
query type can be considered as a special case of the third
query type where the query area is exactly known. Without
loss of generality, in this section, we will focus on nearest-
neighbor queries as it is one of the most important and
challenging location-based queries. Extensions of the pro-
posed approaches to other location-based spatio-temporal
queries, e.g., range queries and aggregates are straightfor-
ward. Also, we focus mainly on evaluating a snapshot an-
swer of the above novel query types. Supporting continuous
queries and large numbers of outstanding queries can be
achieved by seamless integration of the Casper framework
into any scalable and/or incremental location-based query
processor (e.g., see [22, 25, 36, 34, 47, 48, 49]).

767

T
1

T
6

T
19

T
10

T
14

T
23

T
30

T
29

T
28

T
31

T
27

T
32

T
2

T
3

T
16

T
7

T
4

T
8

T
5

T
9

T
18

T
13

T
12

T
17

T
21

T
11

T
20 T

22

T
24 T

25

T
15

T
26

(a) The Server

T
12

(b) Client I

T
1

T
6

T
19

T
10

T
14

T
23

T
30

T
29

T
28

T
31

T
27

T
32

T
2

T
3

T
16

T
7

T
4

T
8

T
5

T
9

T
18

T
13

T
12

T
17

T
21

T
11

T
20 T

22

T
24 T

25

T
15

T
26

(c) Client II

Figure 4: Naive privacy-aware query processing.

5.1 Private Queries over Public Data
In this section, we will consider a nearest-neighbor query

issued by a user u in the form “What is my nearest gas sta-
tion?”. In this case, the privacy-aware query processor does
not know the exact location information of u. Instead, the
query processor knows only a cloaked spatial area that u is
located in. On the other hand, the exact location informa-
tion of gas stations is known. Figure 4a depicts such scenario
by showing the data stored at the server side. There are 32
target objects, i.e., gas stations, T1 to T32 represented as
black circles, the shaded area represents the cloaked spatial
area of the user who issued the query. For clarity, the actual
user location is plotted as a black square inside the cloaked
area. However, such information is not stored at the server.

Figures 4b and 4c give two naive approaches that rep-
resent two different extremes for evaluating private queries
over public data. In the first approach, the server com-
putes the nearest target object to the center of the cloaked
area (T12) and sends the answer directly to the client. Al-
though this approach minimizes the data transmitted from
the server to the client, it gives an inaccurate answer where
the actual nearest target to the client is T13. In the second
approach, the server sends all target objects to the client.
Then, the client evaluates her query locally to get T13 as its
exact answer. Although this approach provides exact an-
swer, it is not practical due to the overhead of transmitting
large numbers of target objects and the limited capabilities
at the client side.

Our approach is considered a compromise between these
two extremes. The main idea is to compute a candidate list

of answers to be sent to the client. Then, the client will
evaluate her query locally over the received candidate list in
order to get the exact answer. We prove that our approach
is scalable and efficient by proving that the computed can-

didate list is inclusive, i.e., contains the exact answer, and
is of minimal size.

5.1.1 Algorithm for Nearest-Neighbor Queries
The main idea of our algorithm is to initially select a set

of filter target objects that can be used to prune the search
over the whole set of target objects. Using the filter objects,
we identify a spatial search space AEXT that covers all the
possible areas that may include a potential answer to the
nearest-neighbor query regardless of the exact user location
in the cloaked area A. Finally, all target objects that lie
inside AEXT are returned to the client as the candidate list.

Figure 5 gives a running example for a private nearest-
neighbor query over public data where it presents a zoom

Algorithm 2 Private NN Queries over Public Data

1: Function Private NN Public Data(Cloaked Area A)
2: AEXT is an extended area and initially set to A
3: for each vertex vi in region A do
4: ti ← is the nearest target object to vi

5: end for
6: for Each edge eij = vivj of region A do
7: if ti = tj then
8: mij ← NULL
9: else

10: Lij is a line connecting ti and tj

11: Pij is a line that divides and is orthogonal to Lij

12: mij is the intersection point of Pij and eij

13: end if
14: dm ← Distance(ti,mij) = Distance(tj ,mij)
15: di ← Distance(vi,ti)
16: dj ← Distance(vj ,tj)
17: maxd ← MAX(dm, di, dj)
18: Expand AEXT by distance maxd in vivj direction
19: end for
20: candidate list ← All target objects inside AEXT .
21: return candidate list

view of the shaded area of Figure 4a along with its neigh-
bor cells. Algorithm 2 gives the pseudo code for private
nearest-neighbor queries over public data. The input to Al-
gorithm 2 is the cloaked spatial area A that is received from
the location anonymizer while the output is a candidate list

of answers to be sent to the user who issued the query. In
general, Algorithm 2 has the following four steps:

STEP 1: The filter step. In this step, four filter target
objects are chosen as the nearest object ti for each vertex vi

in the cloaked area A (Lines 3 to 5 in Algorithm 2). In our
example, (Figure 5a), the four filters are T16, T17, T12, and
T13 where they are the nearest target objects to the vertices
v1, v2, v3, and v4, respectively.

STEP 2: The middle point step. In this step, we aim
to find a point mij for each edge eij = vivj such that mij

divides eij into two segments vimij and mijvj . The main
idea is that any point in the first segment vimij will have ti

as its nearest filter target object and any point in the second
segment mijvj will have tj as its nearest filter target object
while point mij is of equal distance from both targets ti and
tj (Lines 7 to 13 in Algorithm 2). We distinguish between
two cases based on whether the two vertices vi and vj have
the same filter or not. If vi and vj have the same filter t,
then point mij does not exist as all points on edge eij will
have t as their nearest target object (Line 8 in Algorithm 2).
If ti and tj are different, mij is found by connecting ti and
tj through a line Lij . Then, another line Pij is plotted that
is perpendicular to Lij and divides Lij into two equal seg-
ments. Finally, mij will be the intersection point between
Pij and the edge eij (Lines 10 to 12 in Algorithm 2). Fig-
ure 5b depicts this step in our running example where points
m12, m13, m24, and m34 are plotted.

STEP 3: The extended area step. In this step, for each
edge eij , we aim to find the largest distance maxd from any
point on eij to its nearest filter target object (Lines 14 to 18
in Algorithm 2). Only three points on eij can be candidates
to have the distance maxd to their nearest filter object, vi,
vj , or mij . Thus, we compute the three distances di, dj ,
and dm that represent the distances from points vi, vj , and
mij to targets ti, tj , and ti, respectively. Notice that in
case mij does not exist, the distance dm will be 0. Then,
the distance maxd is computed as the maximum distance

768

T
2

T
3

T
16

T
7

T
4

T
8

T
5

T
9

T
18

T
13

T
12

T
17

T
21

T
11

T
20 T

22

T
24

T
25

T
15

T
26

v
1

v
2

v
3

v
4

(a) Step 1: Filters

T
2

T
3

T
16

T
7

T
4

T
8

T
5

T
9

T
18

T
13

T
12

T
17

T
21

T
11

T
20 T

22

T
24

T
25

T
15

T
26

v
1

v
2

v
3

v
4

m
12

m
24

m
34

m
13

(b) Step 2: Middle points

T
2

T
3

T
16

T
7

T
4

T
8

T
5

T
9

T
18

T
13

T
12

T
17

T
21

T
11

T
20 T

22

T
24

T
25

T
15

T
26

v
1

v
2

v
3

v
4

m
12

m
24

m
34

m
13

(c) Step 3: AEXT

T
3

T
16

T
8

T
13

T
12

T
17

T
21

v
1

v
2

v
3

v
4

(d) Step 4: Client

Figure 5: Example of a private query over public data.

of di, dj , and dm (Line 17 in Algorithm 2). Finally, the
area AEXT is expanded by the distance maxd in the same
direction of edge eij (Line 18 in Algorithm 2). Figure 5c
depicts this step where all the computed distances for the
four edges are plotted. Only those distances that contribute
to maxd are plotted as solid while other distances are plotted
as dotted lines. An arrowed line is plotted from each edge to
represent its maxd extension to plot AEXT . The intersection
of the arrowed line with its edge represents the point that
has contributed to maxd.

STEP 4: The candidate list step. In this step, the
server issues a range query that returns all target objects
within the area AEXT as the candidate list. The candidate

list is sent to the client where the query can be evaluated
locally (Lines 20 to 21 in Algorithm 2). Figure 5d depicts
this step where the candidate list has only seven objects
that include the exact query answer T13. Notice the differ-
ence between Figure 5d and Figure 4c, where in the former,
the client needs to evaluate her query on only 7 targets as
opposed to 32 targets in the latter case.

Our approach is independent from the nearest-neighbor
and range query algorithms used in both the filter and ex-

tended area steps to find the nearest target to each ver-
tex and the objects within area AEXT , respectively. These
algorithms are assumed to be implemented in traditional
location-based database servers. We do not have any as-
sumptions about these algorithm, it can be employed us-
ing R-tree or any other methods. In fact, our approach can
be seamlessly integrated with any traditional location-based
database servers to turn them to be privacy-aware.

5.1.2 Proof of Correctness
In this section, we prove the correctness of Algorithm 2

by proving that: (1) it is inclusive, i.e., it returns the exact
answer within its candidate list, and (2) it is minimal, i.e.,
area AEXT is of minimal size given the set of filter targets.

Theorem 1. Given a cloaked area A for a user u located

anywhere within A, Algorithm 2 returns a candidate list that

includes the exact nearest target to u.

Proof. Assume that there is a user u located in area A
where u’s nearest target tu is not included in the candidate

list. Assume further that the exact location of u within A
is on the edge eij = vivj . Based on the filter objects ti and
tj of vi and vj , respectively, we identify two cases:

v
i

v
j

t

(a) t = ti = tj

v
i

v
j

t
i t

j

m
ij

(b) ti 6= tj

Figure 6: Private queries over public data.

Case 1: ti = tj . Figure 6a depicts this case. The dotted
circle represents the distance di from vi to t while the solid
circle represents the distance dj from vj to t. The bold line
that is tangent to the solid circle represents the boundary of
the area AEXT that will include the candidate list. For any
location pu of the user u on vivj , if there is a target tu that
is nearest to pu than t, then tu would be within the union
area of the two circles. Thus, tu should be below the solid
line, hence is included in AEXT and is returned within the
candidate list.
Case 2: ti 6= tj . Figure 6b depicts this case. The dotted

and solid circles represent the distances di and dj , respec-
tively. The bold circle represents the distance dm from mij

to ti. The bold line that is tangent to the bold circle repre-
sents the boundary of the area AEXT that will include the
candidate list. Then, the location pu of the user u is either in
the line segment vimij or mijvj . In the former case, similar
to Case 1, if there is a target tu that is nearest to pu than
ti, then tu would be within the union area of the dotted and
bold circles. Thus, tu should be below the solid line, hence
is included in AEXT and is returned within the candidate

list. Similarly, if pu is on the line segment mijvj , then if
there is a target tu that is nearest to pu than tj , then tu

would be within the union area of the solid and bold circles.
Thus, tu should be below the solid line, hence is included in
AEXT and is returned within the candidate list.

From Cases 1 and 2, we conclude that if user u is on the
boundary of the cloaked region A, then any target object tu

that is nearest to u would be included in the candidate list.
Trivially, the proof would be valid if the user u is within the
area A rather than on its boundaries.

769

v
1

v
2

v
3

v
4

t
3

t
4

t
2

t
1

m
34 m

24

m
12

m
13

(a) Server side

v
1

v
2

v
3

v
4

t
3

t
4

t
2

t
1

m
34 m

24

m
12

m
13

(b) Server side

Figure 7: Private query over private data.

Theorem 2. Given a cloaked area A for a user u and a

set of filter target objects t1 to t4, Algorithm 2 issues the

minimum possible range query to get the candidate list.

Proof. In Figures 6a and 6b, the tangent point between
the bold line and the largest circle may contain a target that
is nearest to one location in vivj (point vj in Figure 6a and
point mij in Figure 6b). Thus, if there is another line that
is lower than the bold line, it will cross the largest circle
and may end up in missing target objects. Thus, the bold
line presents the minimum possible expansion for the line
vivj in order to include all possible nearest target objects
that are closer than ti and tj . Applying the same proof for
the four edges of the area AEXT concludes that AEXT is
the smallest possible area that contains all possible nearest
target objects given a set of target filters objects.

5.2 Private Queries over Private Data
In this section, we extend our approach for private queries

over public data to deal with private data that are repre-
sented by cloaked regions rather than by exact locations.
Similar to Section 5.1 and without loss of generality, we fo-
cus on private nearest-neighbor queries over private data.

5.2.1 Algorithm for Nearest-Neighbor Queries
The same idea of Algorithm 2 can be applied for private

data with the following changes:
STEP 1: The filter step. Similar to the filtering step in

Algorithm 2, the four filter target objects are chosen as the
nearest target object ti to each vertex vi. The only difference
is that for each vertex vi, we consider that the exact location
of a target object within its cloaked area is the furthest
corner from vi. Figure 7a shows only the nearest four target
objects t1, t2, t3, and t4 to the cloaked area. Target objects
are drawn as regions since they represent private data. For
clarity, we draw these rectangles smaller in size than the
query area. However, this is not a necessary condition for
our approach. The dotted line from each vertex vi to its
nearest target ti represents the distance that we measure in
determining the nearest target.

STEP 2: The middle point step. The main idea is
similar to that of Algorithm 2. The only difference is that
the line Lij that connects ti and tj would consider the fur-
thest corner of ti and tj from the reverse vertex vj and vi,
respectively. Figure 7a depicts this step. For example, con-
sider edge v3v4, the line L34 connects the furthest corner of
t4 from vertex v3 to the furthest corner of t3 from v4.

v
i

v
j

t
ij

(a) ti = tj

v
i v

jm
ij

t
j

t
i

(b) ti 6= tj

Figure 8: Private queries over private data

STEP 3: The extended area step. The main idea is
similar to that of Algorithm 2. However, the three distances
that are taken into consideration are di as the distance from
vi to the furthest corner of ti from vi, dj as the distance
from vj to the furthest corner of tj from vj , and dm as the
distance from mij to any of the end points of Lij . Figure 7b
depicts such distances. The bold lines represent the largest
distance computed for each edge. The arrow lines represent
the maxd distance used to expand the area A.

STEP 4: The candidate list step. This step is exactly
similar to that of Algorithm 2. To accommodate data areas
rather than exact point locations, we will return any tar-
get object that has an area overlapped with AEXT . More
sophisticated techniques of probabilistic queries and data
uncertainty can take place. For example, we may choose to
return only those target objects that have more than x%
of their cloaked areas overlap with AEXT . Our approach is
completely independent from deciding whether an object is
considered within an area or not. Thus, our approach can be
seamlessly integrated with any approaches for probabilistic
query processing (e.g., [10, 11, 28, 38, 42, 46]).

5.2.2 Proof of Correctness

Theorem 3. Given a cloaked area A for a user u located

anywhere within A and a set of target objects represented

by their cloaked areas, Algorithm 2 with the modifications in

Section 5.2.1 returns a candidate list that includes the exact

nearest target to u.

Proof. The proof is similar to that of Theorem 1 with
the difference of dealing with rectangular areas of the target
objects rather than with exact point locations. Figures 8a
and 8b show the two cases of ti = tj and ti 6= tj , respec-
tively. As in the proof of Theorem 1a, in Figure 8a, any
target object that could be a nearest neighbor to any point
on vivj should be inside the union area of the dotted and
solid circles. Thus, it would be returned with the candidate
list. Similarly, in Figure 8b, any target object that could
be nearest to any point pu in vivj should overlap the union
of the dotted and bold circles if pu is in vimij or overlap
with the union of the bold and solid circles if pu is in mijvj .
Thus, it would be returned within the candidate list.

Theorem 4. Given a cloaked area A for a user u and a

set of filter objects t1 to t4 represented by their cloaked areas,

Algorithm 2 with the modification in Section 5.2.1 issues the

minimum possible range query to get the candidate list.

Proof. The proof is exactly the same as that of Theo-
rem 2. The tangent bold lines in Figures 8a and 8b serve the
same purpose as those tangent lines in Figures 6a and 6b

770

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 9 8 7 6 5 4

C
P
U

T
i
m
e

(
i
n

m
s
)

Pyramid Height

Adaptive

Basic

(a) Cloaking Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 9 8 7 6 5 4

N
o
.

o
f

U
p
d
a
t
e
s

Pyramid Height

Adaptive

Basic

(b) Update Cost

 35

 30

 25

 20

 15

 10

 5

 1
 9 8 7 6 5 4

E
r
r
o
r

R
a
t
i
o

(
k
)

Pyramid Height

1-10

10-50

50-100

150-200

(c) k Precision

 120

 100

 80

 60

 40

 20

 1
 9 8 7 6 5 4

E
r
r
o
r

R
a
t
i
o

(
A
m
i
n
)

Pyramid Height

<0.005%

0.005-0.01%

0.015-0.02%

0.025-0.03%

(d) Amin Precision

Figure 10: The height of the pyramid structure

Figure 9: Map of Hennepin County, MN, USA.

6. EXPERIMENTAL RESULTS
In this section, we experimentally evaluate the perfor-

mance of the Casper framework, by evaluating its two main
components, the location anonymizer (Section 6.1) and the
privacy-aware query processor (Section 6.2). In addition,
we evaluate the end-to-end performance for the user inter-
action with Casper (Section 6.3). In all the experiments of
this section, we use the Network-based Generator of Moving

Objects [9] to generate a set of moving objects. The input
to the generator is the road map of Hennepin County in
Minnesota, USA (Figure 9). The output of the generator
is a set of moving objects that move on the road network
of the given city. Target objects are chosen as uniformly
distributed in the spatial space.

6.1 Location Anonymizer
In this section, we evaluate and compare the efficiency and

scalability of both the basic and adaptive location anonymiz-
ers with respect to the cloaking time, maintenance cost, and
accuracy. We were unable to perform comparison with other
approaches for the location anonymizer [16, 17] as these ap-
proaches are limited either for small numbers of users [17]
or for privacy requirement (k is from 5 to 10) [16]. Unless
mentioned otherwise, the experiments in this section con-
sider 50K registered mobile users in a pyramid structure
with 9 levels. We generate a random privacy profile for each
user where k and Amin are assigned uniformly within the
range [1-50] users and [.005,.01]% of the space, respectively.

6.1.1 The Pyramid Height
Figure 10 gives the effect of the pyramid height on the per-

formance of both the basic and adaptive location anonymiz-
ers. The pyramid height varies from four to nine levels.
Figure 10a gives the effect of the pyramid height on the
average cloaking time per user request (Algorithm 1). For
more than six pyramid levels, the performance of the adap-

tive approach is clearly better. The main reason is that the
adaptive approach smartly decides about the lowest main-
tained level such that the number of pyramid levels to be
searched is minimized. Figure 10b gives the effect of the
pyramid height on the average number of updates required
for each location update. For lower pyramid levels, the basic

approach has a lower update cost as the cost of splitting and
merging in the adaptive approach prevails the savings in up-
dating the cell counters. However, for higher pyramid levels,
the adaptive approach has less update cost as it encounters
huge savings in updating large numbers of cell counters.

Optimally, a user wants to have a cloaked region that
exactly matches her privacy profile. Due to the resolution of
the pyramid structure, the location anonymizer may not be
able to provide an exact match. Instead, a more restrictive
cloaked region will be given to the user which may result
in a lousy service that the user is not comfortable with.
Figures 10c and 10d give the effect of the pyramid height on
the accuracy of the cloaked region in terms of k and Amin,
respectively. Both the basic and adaptive approaches yield
the same accuracy as they result in the same cloaked region
from Algorithm 1. In Figure 10c, the accuracy is measured
as k′/k, where k′ is the number of users included in the
cloaked spatial region while k is the exact user requirement.
We run the experiment for various groups of users with most
relaxed privacy requirements (k is from 1 to 10) to restrictive
users (k is from 150 to 200) while setting Amin to zero.
Lower pyramid levels give very inaccurate answer for relaxed
users. However, higher pyramid levels give very accurate
cloaked region that is very close to one (optimal case) even
for relaxed users. Similar behavior is depicted in Figure 10d
where the accuracy is measured as A′/Amin, where A′ is the
computed cloaked spatial region while Amin is the required
one. Also, we run the experiment for several groups of users
with various Amin requirements while setting k to one.

6.1.2 Scalability
Figure 11 gives the scalability of the basic and adaptive

location anonymizers with respect to varying the number
of registered users from 1K to 50K. With respect to the
cloaking time (Figure 11a), the performance of the basic lo-
cation anonymizer is greatly enhanced with the increase of
the number of users. The main idea is that by increasing the
number of users, the privacy requirements of mobile users
will be likely to be satisfied in lower pyramid levels, i.e.,
less recursive calls to Algorithm 1. This is not the case for
the adaptive location anonymizer where the large number of
users increases the number of maintained grid cells to ac-

771

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 40 30 20 10 1C
l
o
a
k
i
n
g

C
P
U

T
i
m
e

(
i
n

m
s
)

Number of Users (K)

Adaptive

Basic

(a) Cloaking Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 40 30 20 10 1

N
o
.

o
f

U
p
d
a
t
e
s

Number of Users (K)

Adaptive

Basic

(b) Update Cost

Figure 11: Number of users

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

150-200100-15050-10010-501-10

C
P
U

T
i
m
e

(
i
n

m
s
)

k Ranges

Adaptive

Basic

(a) Cloaking Time

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

150-200100-15050-10010-501-10

N
o
.

o
f

U
p
d
a
t
e
s

k Ranges

Adaptive

Basic

(b) Update Cost

Figure 12: k ranges

commodate users with various requirements. However, the
cloaking time of the adaptive approach is always less than
that of the basic approach. For the update cost (Figure 11b),
with the increase of the number of users, the performance
of the adaptive approach is always better than that of the
basic approach due to the less number of maintained cells.

6.1.3 Effect of Privacy Profile
Figure 12 gives the effect of increasing the k anonymity

parameter on both the basic and adaptive approaches. The
range of k varies from [1-10] to [150-200]. For the cloaking
time (Figure 12a), the basic location anonymizer incurs high
cloaking cost with more restrictive privacy requirements as
it has to traverse more pyramid levels in order to get the
desired cloaked region. The adaptive location anonymizer
has similar cost trend for relaxed users (k < 50). How-
ever, with more restrictive privacy profile, the performance
of the adaptive approach gets much better as mobile users
tend to cluster in higher pyramid levels, thus decreasing the
cloaking time. For the update cost (Figure 12b), the basic

approach is not affected by the privacy profile as it always
maintains a complete pyramid structure. On the other hand,
the adaptive approach has high update cost only for relaxed
users as this will require maintaining lower pyramid levels
in addition to the splitting and merging cost. However, the
adaptive approach adopts its structure with more strict pri-
vacy requirements to give a much better performance than
that of the basic approach. Similar figures and experiments
give similar results for the case of changing Amin (not shown
due to space limitation).

6.2 Privacy-aware Query Processor
In this section, we study the efficiency and scalability of

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

C
a
n
d
i
d
a
t
e

A
n
s
w
e
r

S
i
z
e

No. of Target Objects (K)

4 Filters

2 Filters

1 Filter

(a) Candidate List

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8 9 10

C
P
U

T
i
m
e

(
i
n

m
s
)

No. of Target Objects (K)

4 Filters

2 Filters

1 Filter

(b) Processing Time

Figure 13: Number of public target objects

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

C
a
n
d
i
d
a
t
e

A
n
s
w
e
r

S
i
z
e

No. of Target Objects (K)

4 Filters

2 Filters

1 Filter

(a) Candidate List

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 3 4 5 6 7 8 9 10

C
P
U

T
i
m
e

(
i
n

m
s
)

No. of Target Objects (K)

4 Filters

2 Filters

1 Filter

(b) Processing Time

Figure 14: Number of private target objects

the privacy-aware query processor with respect to the size of
the returned candidate list and the query processing time.
As our approach is unique in nature where it is the first
query processor that deals with private data, we evaluate
our privacy-aware query processor based on the number of
used filters. We compare among three alternatives of our
approach when using one, two, or four filters in the first
step of Algorithm 2. When choosing one filter, we choose
the nearest target to the center of the cloaked area while
in the case of two filters, we choose the nearest target to
any two reverse corners in the cloaked area. For the case of
four filters, we choose the nearest target to each corner as
depicted in Algorithm 2. Notice that all the theorems and
proofs in Section 5 are valid for the three cases. For tra-
ditional nearest-neighbor and range query algorithms used
within our privacy-aware query processor (Steps 1 and 3 in
Section 5), we use similar techniques to [36] and [34], respec-
tively. However, as we have mentioned earlier our framework
is completely independent from these approaches as it can be
integrated with any existing algorithms for nearest-neighbor
and range queries. Unless mentioned otherwise, all experi-
ments in this section have 10K target objects, user privacy
profile of k in [1-50], Amin in [.005-.01]. Private target ob-
jects has a region of [1-64] cells.

6.2.1 Scalability
Figures 13 and 14 give the scalability of the privacy-aware

query processor when increasing the number of public and
private targets from 1K to 10K, respectively. For the case
of public targets, the size of the candidate list is greatly re-
duced when using more filters (Figure 13a). For the case
of 10K targets, using four filters results in a candidate list
about half the size of the one returned using only one fil-

772

 0

 50

 100

 150

 200

 250

102425664164

C
a
n
d
i
d
a
t
e

A
n
s
w
e
r

S
i
z
e

Cloaked Region Size

4 Filters

2 Filters

1 Filter

(a) Candidate List

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

102425664164

C
P
U

T
i
m
e

(
i
n

m
s
)

Cloaked Region Size

4 Filters

2 Filters

1 Filter

(b) Processing Time

Figure 15: Cloaked region size (public data)

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

25664164

C
a
n
d
i
d
a
t
e

A
n
s
w
e
r

S
i
z
e

Maximum Data Region Size

4 Filters

2 Filters

1 Filter

(a) Candidate List

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

25664164

C
P
U

T
i
m
e

(
i
n

m
s
)

Maximum Data Region Size

4 Filters

2 Filters

1 Filter

(b) Processing Time

Figure 16: Data region size

ter. With respect to the query processing time (Figure 13b),
the computational overhead from computing four filters is
amortized by the huge pruning in the search space to get
the candidate list. Thus, using four filters always achieves
better performance.

For the case of private target data, (Figure 14), the per-
formance of the candidate list size is similar to that of Fig-
ure 13. However, with respect to the query processing time
(Figure 13b), using four filters always results in a higher
cost. The main reason is that searching private data (rep-
resented as cloaked regions) is an expensive task. However,
the small size of the candidate list does not affect only the
query processing cost at the server, but it also significantly
reduces the transmission cost of the candidate list to the
client along with the client computation time. Thus, even
the case of four filters gives higher query processing cost at
the server size, it is greatly preferred as it saves in the trans-
mission time due to the less candidate list size. Section 6.3
will elaborate more on the effect of the transmission cost.

6.2.2 Privacy Profile of Queries and Data
Figure 15 gives the effect of the user privacy profile on

the query performance. The cloaked query area varies from
4 to 1024 cells while the target objects are public. Using
more filters consistently results in a better performance in
terms of both the candidate list size and the query process-
ing time. Similar performance is achieved when considering
private target objects (not shown due to the space limita-
tion). Figure 16 gives the effect of the privacy profile of
target objects when varying the cloaked region for target
objects from 4 to 256 cells. Using four filters results in sig-
nificant decrease in the candidate list size while an increase
in the query processing time.

0

2

4

6

8

10

12

14

16
Transmission Cost

Query Processing Time

Cloaking Time

 Ranges

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

1-10 10-50 50-100 100-150 150-200

4
fil

te
rs

1
fil

te
r

(a) Public data

0

2

4

6

8

10

12

14

16
Transmission Cost
Query Processing Time
Cloaking Time

 Ranges

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

1-10 10-50 50-100 100-150 150-200

4
fil

te
rs

1
fil

te
r

(b) Private data

Figure 17: End-to-End Performance

6.3 The CASPER End-to-End Performance
This section evaluates the overall performance of the

Casper framework based on the k-anonymity. Figure 17
measures the total end-to-end time from submitting a pri-
vate nearest-neighbor query to Casper and getting back the
result for both public and private data. The total time is di-
vided into three components based on the consumed time at
the location anonymizer, the privacy-aware query processor,
and the transmission time of the candidate list. For trans-
mission time, we assume that a data record is of size 64 bytes
transmitted over a channel of bandwidth 100 Mbps. We use
the adaptive location anonymizer and a privacy-aware query
processor with four filters. We consider 10K mobile users
and 10K target objects that are represented by a cloaked
area [1-64] cells for the case of private data.

Figure 17a shows the performance for groups of k from [1-
10] till [40-50] while Figure 17b gives the same experiment
but for larger values of k up to [150-200]. It is apparent
that the location cloaking time at the location anonymizer
is the lowest overhead as it appears only for small values of
k. For strict privacy requirements, the location anonymizer

time is almost negligible. The main reason is that the loca-

tion anonymizer spends its time wisely in maintaining the
pyramid structure in order to provide very small cloaking
time. For lower privacy profiles (K < 10 for public data
and k < 30 for private date), the query processing time
(using four filters) dominates the transmission time. How-
ever, for strict privacy requirements, the transmission time
is the dominant factor in affecting the end-to-end perfor-
mance. When using less than four filters in the privacy-

aware query processor, the number of candidate list signifi-
cantly increases, hence the transmission time increases and
greatly dominates and degrades the overall performance. Al-
though less than four filters reduces the query processing
time as depicted in Figures 14b and 16b, yet it will not in-
crease the total performance. Similar performance is given
when varying the Amin parameter (Experiments of filters
and Amin are not shown due to space limitation).

7. CONCLUSION
This paper introduces Casper; a novel framework in which

mobile users can entertain location-based services without
the need to disclose their private location information. Mo-
bile users register with Casper by a user-specified privacy

profile. Casper has two main components, the location

anonymizer and the privacy-aware query processor. The
location anonymizer acts as a third trusted party that blurs

773

the exact location information of each user into a cloaked
spatial area that matches the user privacy profile. Four re-
quirements from the location anonymizer are outlined: accu-
racy, quality, efficiency, and flexibility. Two alternatives of
the location anonymizer that achieve these requirements are
proposed: the basic and adaptive location anonymizer. The
privacy-aware query processor is embedded into traditional
location-based database servers to tune their functionalities
to be privacy-aware by dealing with cloaked spatial areas
rather than exact point information. Three novel query
types that are supported by Casper are identified, private

queries over public data, public queries over private data,
and private queries over private data. We have provided
a framework for dealing with these queries that returns a
candidate list of answers rather than an exact answer. We
have proved that the returned candidate list contains the ex-
act answer and is of minimal size. Extensive experimental
evaluation studies all the components of Casper and shows
its efficiency, accuracy, and scalability with large number of
mobile users and various privacy requirements.

8. REFERENCES
[1] L. Ackerman, J. Kempf, and T. Miki. Wireless location privacy:

A report on law and policy in the united states, the europrean
union, and japan. Technical Report DCL-TR2003-001,
DoCoMo Commuinication Laboratories, USA, 2003.

[2] G. Aggarwal. et al. Vision Paper: Enabling Privacy for the
Paranoids. In VLDB, 2004.

[3] R. Agrawal, A. V. Evfimievski, and R. Srikant. Information
Sharing Across Private Databases. In SIGMOD, 2003.

[4] Anonymous surfing. http://www.anonymizer.com.

[5] W. G. Aref and H. Samet. Efficient Processing of Window
Queries in The Pyramid Data Structure. In PODS, 1990.

[6] L. Barkhuus and A. K. Dey. Location-Based Services for
Mobile Telephony: a Study of Users’ Privacy Concerns. In
INTERACT, 2003.

[7] R. J. Bayardo and R. Agrawal. Data Privacy through Optimal
k-Anonymization. In ICDE, 2005.

[8] A. R. Beresford and F. Stajano. Location Privacy in Pervasive
Computing. IEEE Pervasive Computing, 2(1):46–55, 2003.

[9] T. Brinkhoff. A Framework for Generating Network-Based
Moving Objects. GeoInformatica, 6(2):153–180, 2002.

[10] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying
Imprecise Data in Moving Object Environments. TKDE, 16(9),
Sept. 2004.

[11] X. Dai, M. L. Yiu, N. Mamoulis, Y. Tao, and M. Vaitis.
Probabilistic Spatial Queries on Existentially Uncertain Data.
In SSTD, 2005.

[12] W. Du and M. J. Atallah. Secure Multi-Party Computation
Problems and their Applications: A Review and Open
Problems. In New Security Paradigms Workshop, 2001.

[13] M. Duckham and L. Kulik. A Formal Model of Obfuscation and
Negotiation for Location Privacy. In Pervasive, 2005.

[14] F. Emekci, D. Agrawal, A. E. Abbadi, and A. Gulbeden.
Privacy Preserving Query Processing using Third Parties. In
ICDE, 2006.

[15] Foxs News. Man Accused of Stalking Ex-Girlfriend With GPS.
http://www.foxnews.com/story/0,2933,131487,00.html.

[16] B. Gedik and L. Liu. A Customizable k-Anonymity Model for
Protecting Location Privacy. In ICDCS, 2005.

[17] M. Gruteser and D. Grunwald. Anonymous Usage of
Location-Based Services Through Spatial and Temporal
Cloaking. In MobiSys, 2003.

[18] M. Gruteser and X. Liu. Protecting Privacy in Continuous
Location-Tracking Applications. IEEE Security and Privacy,
2(2):28–34, 2004.

[19] R. H. Güting, V. T. de Almeida, D. Ansorge, T. B. Z. Ding,
T. Höse, F. Hoffmann, M. Spiekermann, and U. Telle.
SECONDO: An Extensible DBMS Platform for Research
Prototyping and Teaching. In ICDE, 2005.

[20] U. Hengartner and P. Steenkiste. Protecting Access to People
Location Information. In Proceeding of the International

Conference on Security in Pervasive Computing, SPC, 2003.

[21] J. I. Hong and J. A. Landay. An Architecture for
Privacy-Sensitive Ubiquitous Computing. In MobiSys, 2004.

[22] H. Hu, J. Xu, and D. L. Lee. A Generic Framework for
Monitoring Continuous Spatial Queries over Moving Objects.
In SIGMOD, 2005.

[23] N. Jefferies, C. J. Mitchell, and M. Walker. A Proposed
Architecture for Trusted Third Party Services. In the Intl.

Conf. on Cryptography: Policy and Algorithms, 1995.

[24] C. S. Jensen. Database Aspects of Location-Based Services. In
Location-Based Services, pages 115–148. Morgan Kaufmann,
2004.

[25] C. S. Jensen, D. Lin, B. C. Ooi, and R. Zhang. Effective
Density Queries of Continuously Moving Objects. In ICDE,
2006.

[26] E. Kaasinen. User needs for location-aware mobile services.
Personal and Ubiquitous Computing, 7(1):70–79, 2003.

[27] H. Kido, Y. Yanagisawa, and T. Satoh. An Anonymous
Communication Technique using Dummies for Location-based
Services. In Intl. Conf. on Pervasive Services, ICPS, 2005.

[28] I. Lazaridis and S. Mehrotra. Approximate Selection Queries
over Imprecise Data. In ICDE, 2004.

[29] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian
Multidimensional K-Anonymity. In ICDE, 2006.

[30] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito:
Efficient Full-Domain K-Anonymity. In SIGMOD, 2005.

[31] A. Meyerson and R. Williams. On the Complexity of Optimal
K-Anonymity. In PODS, 2004.

[32] M. F. Mokbel. Towards Privacy-Aware Location-Based
Database Servers. In International Workshop on Privacy Data

Management, PDM, Apr. 2006.

[33] M. F. Mokbel and W. G. Aref. PLACE: A Scalable
Location-aware Database Server for Spatio-temporal Data
Streams. IEEE Data Engineering Bulletin, 28(3):3–10, 2005.

[34] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable
Incremental Processing of Continuous Queries in
Spatio-temporal Databases. In SIGMOD, 2004.

[35] M. F. Mokbel, X. Xiong, W. G. Aref, S. Hambrusch,
S. Prabhakar, and M. Hammad. PLACE: A Query Processor
for Handling Real-time Spatio-temporal Data Streams (Demo).
In VLDB, 2004.

[36] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou.
Conceptual Partitioning: An Efficient Method for Continuous
Nearest Neighbor Monitoring. In SIGMOD, 2005.

[37] A. Pfitzmann and M. Kohntopp. Anonymity, Unobservability,
and Pseudonymity - A Proposal for Terminology. In
Proceedings of the Workshop on Design Issues in Anonymity
and Unobservability, 2000.

[38] D. Pfoser, N. Tryfona, and C. S. Jensen. Indeterminacy and
Spatiotemporal Data: Basic Definitions and Case Study.
GeoInformatica, 9(3), Sept. 2005.

[39] L. Sweeney. Achieving k-anonymity Privacy Protection using
Generalization and Suppression. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems,
10(5):571–588, 2002.

[40] L. Sweeney. k-anonymity: A Model for Protecting Privacy.
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

[41] S. L. Tanimoto and T. Pavlidis. A Hierarchical Data Structure
for Picture Processing. Computer Graphics and Image
Processing, 4(2), 1975.

[42] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain.
Managing Uncertainty in Moving Objects Databases. TODS,
29(3), Sept. 2004.

[43] USAToday. Authorities: GPS system used to stalk woman.
http://www.usatoday.com/tech/news/2002-12-30-gps-
stalker x.htm.

[44] J. Warrior, E. McHenry, and K. McGee. They Know Where
You Are . IEEE Spectrum, 40(7):20–25, 2003.

[45] O. Wolfson, H. Cao, H. Lin, G. Trajcevski, F. Zhang, and
N. Rishe. Management of Dynamic Location Information in
DOMINO. In EDBT, 2002.

[46] O. Wolfson and H. Yin. Accuracy and Resource Concumption
in Tracking and Location Prediction. In SSTD, 2003.

[47] T. Xia and D. Zhang. Continuous Reverse Nearest Neighbor
Monitoring. In ICDE, 2006.

[48] M. L. Yiu, N. Mamoulis, and D. Papadias. Aggregate Nearest
Neighbor Queries in Road Networks. TKDE, 17(6), 2005.

[49] X. Yu, K. Q. Pu, and N. Koudas. Monitoring K-Nearest
Neighbor Queries Over Moving Objects. In ICDE, 2005.

774

